Charge transfer versus molecular conductance: molecular orbital symmetry turns quantum interference rules upside down.
نویسندگان
چکیده
Destructive quantum interference has been shown to strongly reduce charge tunneling rates across molecular bridges. The current consensus is that destructive quantum interference occurs in cross-conjugated molecules, while linearly conjugated molecules exhibit constructive interference. Our experimental results on photoinduced charge transfer in donor-bridge-acceptor systems, however, show that hole transfer is ten times faster through a cross-conjugated biphenyl bridge than through a linearly conjugated biphenyl bridge. Electronic structure calculations reveal that the surprisingly low hole transfer rate across the linearly conjugated biphenyl bridge is caused by the presence of destructive instead of constructive interference. We find that the specific molecular orbital symmetry of the involved donor and acceptor states leads to interference conditions that are different from those valid in single molecule conduction experiments. Furthermore, the results indicate that by utilizing molecular orbital symmetry in a smart way new opportunities of engineering charge transfer emerge.
منابع مشابه
Charge transfer versus molecular conductance: molecular orbital symmetry turns quantum interference rules upside down† †Electronic supplementary information (ESI) available: Details on the synthesis and characterization of 1, 2mm, 2mp, 2pp, and 3, details on the experimental methodology, xyz-coordinates for all structures used in the calculations, details on the presence of destructive interference in S2mm, details on the orbital symmetry considerations. See DOI: 10.1039/c5sc01104c
متن کامل
When things are not as they seem: quantum interference turns molecular electron transfer "rules" upside down.
We present an interesting consequence of the differences between cross-conjugated and linearly conjugated molecules: the breakdown of conventional understanding of trends in molecular electron transfer. Interference effects are dominant in cross-conjugated molecules with unusual results: long molecules may have faster rates of electron transfer than short molecules, saturated molecules may have...
متن کاملQuantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations
In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...
متن کاملQuantum Mechanical Study of the Structure, NBO and HOMO–LUMO Analysis of Molecule Oxaliplatinium
Oxaliplatinium is an anticancer drug, used in chemotherapy. To investigate the oxaliplatinium structure based on frontier orbital analysis, thermodynamic analysis and natural bond orbital (NBO) theory is the main objective of the present research. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The NBO charges, the values of electric dipole moment (µ) of ...
متن کاملThe AIM, NBO thermodynamic, and quantum study of the interaction nitramide molecule with pristine, B, As and B&As doped of AlNNTs
In this work, by using density functional theory, the adsorption of Nitramide (NH2NO2) molecule on the surface of pristine, B, As and B&As doped (4,4) armchair aluminum nitride nanotube (AlNNTs) is investigated. From optimized structures the adsorption energy, deformation energy, natural bond orbital (NBO), atom in molecule (AIM), quantum parameters, reduced density gradient (RDG) and molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 6 7 شماره
صفحات -
تاریخ انتشار 2015